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A MATRIX-FREE APPROACH FOR SOLVING THE PARAMETRIC
GAUSSIAN PROCESS MAXIMUM LIKELIHOOD PROBLEM

MIHAI ANITESCU∗, JIE CHEN∗, AND LEI WANG∗

Abstract. Gaussian processes are the cornerstone of statistical analysis in many application ar-
eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization
in the computation of the likelihood. In this work, we present a matrix-free approach for comput-
ing the solution of the maximum likelihood problem involving Gaussian processes. The approach is
based on a stochastic programming reformulation followed by sample average approximation applied
to either the maximization problem or its optimality conditions. We provide statistical estimates of
the approximate solution. The method is illustrated on several examples where the data is provided
on a regular or irregular grid. In the latter case, the action of a covariance matrix on a vector is
computed by means of fast multipole methods. For each of the examples presented, we demonstrate
that the approach scales linearly with an increase in the number of sites.
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1. Introduction. Gaussian processes (GPs) have been widely used throughout
the statistical and machine learning communities for modeling natural processes [6, 7]
for regression and classification problems [28], and for interpolation in parameter
space for computer model output [20, 18]. In addition, the Gaussian processes web
site (http://www.gaussianprocess.org) provides a good overview of the reach of these
models. Their widespread use is in part due to the conceptual and computational ad-
vantages for processes that are a function of a continuous index, but also because they
can be used as building blocks for modeling non-Gaussian processes. For example,
Diggle et al. [8] combine generalized linear models and GP models to model integer
or binary-valued spatial processes. A similar approach is used for multiclass classifi-
cation problems by attaching a latent GP to each class [28]. An important property
of GPs is that they can be fully characterized by only their means and covariance
functions.

Unfortunately, several factors limit their application to very large data problems.
In this work we address one of the factors: the reliance of most algorithms involving
GPs on the Cholesky factorization of the covariance matrix, which many times is
dense. For this reason, such algorithms cannot scale to the size of problems currently
confronting us. We discuss this difficulty in §1.1.

1.1. Calculation of the hypeparameters. We are interested here in manipu-
lating the multivariate Gaussian with mean 0 and covariance matrix K(θ). While the
approach we present is general, the focus case is the one where K(θ) is attached to
a stationary Gaussian process over a d dimensional space, defined by the covariance
function φ(r;θ), where φ is a scalar, symmetric, positive-definite function defined
over Rd and θ is its hyperparameter typically of a small dimension (examples of such
functions are given in §4). Given the sites xi, i = 1, 2, . . . , nd, the i, j entry in K(θ)
is φ(xi − xj ;θ). We assume that the resulting covariance matrix K(θ) is at least
twice continuously differentiable with respect to θ in its domain. In this work, we are

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
Emails: (anitescu, jiechen, lwang)@mcs.anl.gov

1



2 M. ANITESCU, J. CHEN, AND L. WANG

interested in the case where the number nd of sites is large, with the aim of treating
cases with nd = 106 and beyond.

Denote by y the observed data vector of length nd. The log-likelihood function
assumes the form

log p(y | θ) = −1

2
yTK(θ)−1y − 1

2
log |K(θ)| − nd

2
log 2π, (1.1)

where |A| is the determinant of A. For spatiotemporal processes, the hyperparam-
eter θ describes dependency as a function of the spatiotemporal coordinates of the
observations. The gradients of the likelihood function can be computed analytically
[28]:

∂

∂θj
log p(y | θ) = 1

2
tr

((
(K(θ)−1y)(K(θ)−1y)T −K(θ)−1

)∂K(θ)

∂θj

)
, (1.2)

for j = 1, 2, . . . , nθ. Here, tr(A) denotes the trace of a square matrix A.
Our aim is to find the parameter θ that solves the maximum likelihood problem:

max
θ

[log p(y | θ)] = max
θ

{
−1

2
yTK(θ)−1y − 1

2
log |K(θ)| − nd

2
log 2π

}
. (1.3)

Such a parameter satisfies the optimality condition [26]

0 =
∂

∂θj
log p(y | θ) = 1

2
tr

((
(K(θ)−1y)(K(θ)−1y)T −K(θ)−1

)∂K(θ)

∂θj

)
(1.4)

for j = 1, 2, . . . , nθ. The equations (1.4) are sometimes called the score equations.
The parameter θ can thus be obtained by either the optimization approach (1.3) or
the nonlinear equation approach (1.4). The problem can be readily modified to ac-
commodate a mean function as well [28], with few changes to the principal challenges
that we will encounter in this work. This can be carried out by replacing in (1.1) and
(1.4) the data vector y by its deviation from the mean, y − m(θ) and by suitably
adding an additional term to the computation of the derivative in the score equations
(1.4) [28, §2.7]. Here m(θ) is the mean function, which is twice continuously differ-
entiable with respect to the hyperparameters θ. On the other hand, the introduction
of the mean function does not change either the use of the trace operator in the score
equations (1.4) or of the determinant in (1.1), which are the main modeling bottle-
necks addressed here. We thus confine the treatment to the mean 0 case, though all
the results are readily extendable to the nonzero mean case by means of the changes
described above.

Since we are interested in situations where the number of sample points is very
large, the resolution of the maximum likelihood problem (1.3) or of the score equations
(1.4) requires the inversion of large, symmetric, positive-definite matrices (or rather,
the solution of their associated linear systems) and, in the case of the likelihood
function, the computation of the determinants of those matrices. Since the inversion
scales as n3d and since the matrix K(θ) is typicaly dense, direct approaches (such
as Cholesky factorization, the typically recommended approach to carry out such
calculations [28]) rapidly lose their usefulness in terms of both computing time and
storage.

Several approaches have been adopted to circumvent this difficulty, including
data reduction strategies—effectively introducing irreducible approximations [17]. In
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this work, we are interested in asymptotically exact methods, that is, methods that
can approximate the log-likelihood or trace equations to any prescribed accuracy by
carrying a suitable trade-off with computational cost, such as the ones described in
[12]. That reference adapts methods due to Skilling [31] to perform approximations
to terms like K(θ)−1y that involve only matrix-vector multiplications by using the
conjugate gradient method. For circumventing the issue of the calculation of the
determinant in maximum likelihood, Gibbs and MacKay [12] propose an approach
using only a stochastic estimator that approximates the score equations based on
Hutchinson’s trace estimator [19]. The approach needs only linear system solves with
the covariance matrix, which reduces again to a conjugate gradient approach.

For the matrix-vector multiplication, several ideas for scalable computation have
been explored. One can work with compactly supported kernels [28] or combine them
in Schur products with more general kernels, a technique called “tapering” [11]—but
such ideas nonetheless result in an irreducible approximation. Unfortunately, as we
demonstrate in Figure 4.1, such problems can result in maximum likelihoods with a
very “bumpy” likelihood surface, which is thus difficult to explore by local optimiza-
tion methods. If the data is on a grid and if the covariance matrix is stationary,
then one can use spectral methods [28, 29]. Separability of the covariance function in
output space leads to further computational simplifications—the covariance matrix
for a given θ value has a Kronecker product form, so its inverse can be calculated
separately in each subspace. For cases not on the grid, the situation is considerably
more difficult. Using techniques from N-body problems, one can reduce the multi-
plication complexity to nd lognd by using efficient approximations based on kd-trees
and fast multipole expansions [13]—though in that reference the focus was on specific
tasks of statistical analysis as opposed to fast matrix-vector multiplication. We note,
however, that these methods were used primarily for the conditional prediction cal-
culation, which assumes the parameter θ is known. None of the methods have been
tested in the context of computing the maximum likelihood, which is the focus of this
work.

1.2. Our work. Building on the work we started in [5], where we presented a
matrix-free approach for sampling from very large scale stationary GPs, we propose a
matrix-free approach for computing the solution of the maximum likelihood problem
by solving either (1.3) or (1.4). The approach uses the Hutchinson trace estimator to
convert these problems in their stochastic average approximation versions. In turn,
this results in operations that need only matrix-vector multiplications with K(θ) in a
way that does not store any matrix. If the matrix-vector multiplication can be carried
out in O(nd log nd), then these approaches also become properly scalable.

As a result, the approach opens an avenue in solving GP problems for very large
data sets. In this work, we demonstrate the approach with data sets of the order of
106, but there is no conceptual limit to apply this approach efficiently to data sets
whose size is proportional to the computer memory available.

Our contribution, compared with the other references cited, is to connect the
Hutchinson trace estimator with a sample average approximation (SAA) approach
(see §2.2). This provides a mechanism to produce confidence intervals for the solution
of the approximation procedure (§2.1). Note that using Hutchinson’s trace estimator
as a stochastic estimator only—for example, as a stochastic gradient method [33]—in
a procedure that is subjected to the noise in the estimator would create difficulties
when coupled with deterministic optimization approaches. The SAA approach uses
sampling to create a smooth optimization problem that can be then solved with many
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of the tools available. The statistical nature of the estimator appears only as an error
in the final solution, which we can control by the use of confidence intervals. We
note that an idea similar to using SAA to reformulate the optimization problem is
explored in a PDE-constrained parameter estimation problem [15]. In that reference,
the trace is introduced to restate the objective function in a nonlinear least-squares
context. In our case, the trace is used to rewrite the term containing the determinant
of the covariance matrix. In the context of GP analysis, the SAA approach for the
maximization formulation (1.3) as opposed to only the score equations (1.4), although
not central to this work, is entirely new, to our knowledge.

In addition, we discuss in detail two novel items: the benefit of using block precon-
ditioned conjugate gradients (§3.1) and the use of circulant preconditioners to acceler-
ate the resulting linear solves (§3.2). We explore the use of fast multipole methods to
provide a maximum likelihood solution that is matrix-free for the out-of-regular-grid
case even for kernels that are not compactly supported (§3.3.1), another novel devel-
opment to our knowledge since the focus in [13] was on functions of GPs that assume
the parameters known. Moreover, our approach provides specific coefficients for the
Matern function class. Most importantly, we demonstrate our findings in the 106 data
size range (§5), much larger than these described in [12]. These developments result
in a scalable approach for GP analysis, provided that the preconditioning strategy is
successful.

2. Sample average approximation. Important for our work is the following
relationship, which connects the trace of a matrix A with an expectation [19]:

tr(A) = Eu[u
TAu]. (2.1)

Here u is a random vector with independent components, each taking the values −1
and 1 with probability 0.5.1 Using the relationship log |A| = tr(log(A)) for positive
definite A, we obtain that

log p(y | θ) = −1

2
yTK(θ)−1y − 1

2
tr(log(K(θ)))− nd

2
log 2π. (2.2)

From (2.2) and (2.1) and with a sign change, the maximum likelihood problem (1.3)
then becomes the stochastic programming problem

min
θ

{
1

2
Eu

[
uT log(K(θ))u

]
+

1

2
yTK(θ)−1y +

nd
2

log 2π

}
. (2.3)

Similary, from (2.2) and (2.1), the score equations (1.4) become the stochastic non-
linear equations

0 = Eu [F (θ,u)] , (2.4)

where for j = 1, 2, . . . , nθ,

Fj(θ,u) =
1

2
uT

((
(K(θ)−1y)(K(θ)−1y)T −K(θ)−1

)∂K(θ)

∂θj

)
u.

1In fact, (2.1) holds for any random vector u having zero mean and identity covariance matrix,
but the suggested distribution of u gives the smallest variance among all such distributions.
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2.1. Preliminaries of SAA methods. At the center of our approach sits
stochastic programming and one of its approaches to solving it. Stochastic program-
ming typically refers to the following problem:

min
x

Eω [f (x, ζ(ω))] . (2.5)

Here ζ is a vector-valued random variable over a probability space (Ω,Σ,P) with
values in Rm. Also, the function f satisfies f : Rp × Rm → R. We assume that
f(x, ζ) is continuous in both variables and twice continuously differentiable in the
first variable. A related problem is the stochastic nonlinear equation

Eω [F (x, ζ(ω))] = 0, (2.6)

where F : Rp × Rm → Rp. We assume that F (x, ζ) is continuous and continuously
differentiable in the first variable.

One of the ways to solve such problems, which we pursue in this paper, is by
using a sample average approximation (SAA) of the expectation. That is, we extract
N independent, identically distributed samples ζi(ω), i = 1, 2, . . . , N , and, for a
function g(x, ζ) : Rn × Rm → Rp, we write

Eω [g (x, ζ(ω))] ≈ 1

N

N∑
i=1

g
(
x, ζi(ω)

)
.

Note that for one experiment, ζi(ω) will be a fixed vector; the ω dependence simply
denotes its random variable nature.

For the nonlinear equation formulation (2.6), the SAA approach becomes

0 =
1

N

N∑
i=1

F
(
x, ζi(ω)

)
, (2.7)

whose solution we denote by xN (ω), a random variable. We assume that (2.6) has a
solution x∗ at which its Jacobian J , defined as:

J = ∇xEω [F (x∗, ζ(ω))] ,

is nonsingular. It follows that, with probability 1, xN is locally unique in a neigh-
borhood of x∗ [30, Theorem 5.14] for N sufficiently large. Indeed, that result applies
because (a) x∗ is a strongly regular point of the nonlinear equation (2.6) due to the
nonsingularity assumption on the Jacobian; (b) F (x, ζ) is assumed to be once con-
tinuosly differentiable in x and (c) F (x, ζ) and its derivative are continuous and thus
uniformly bounded on a compact set containing x∗, which can be the closure of a
bounded neighborhood over which we wish to prove uniqueness. For the last point it
results that assumption E3 following [30, Theorem 5.14] does apply.

We will assume from here on that x∗ is unique. We define the empirical Jacobian
and covariance matrix as

JN =
1

N

N∑
i=1

∇xF
(
xN , ζi(ω)

)
, ΣN =

1

N

N∑
i=1

F
(
xN , ζi(ω)

)
F
(
xN , ζi(ω)

)T
.

(2.8)
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We then obtain [30, (5.82)] the following convergence in distribution:

N
1
2

[
V N
]− 1

2
(
xN (ω)− x∗) D→ N (0, I), (2.9)

where V N is the empirical covariance matrix

V N =
[
JN
]−T

ΣN
[
JN
]−1

. (2.10)

Here we assume that the covariance matrix of F (x∗, ζ(ω)) is positive definite, which
means that, with probability 1, so will be ΣN for N sufficiently large. In addition,
to obtain (2.9) from [30, (5.82)], we use the fact that ΣN and JN converge with
probability 1. Note that we can apply the result [30, (5.82)] since we use independent
identically distributed sampling as is required by that result. The relationships (2.9)
and (2.10) are used to obtain confidence intervals for the estimates xN of x∗.

For the optimization problem (2.5), the SAA approximation becomes

min
x

1

N

N∑
i=1

f
(
x, ζi(ω)

)
. (2.11)

We denote the solution of this problem by xN,o(ω). Define the Hessian

H = ∇2
xxEω [f (x∗, ζ(ω))] . (2.12)

Then, if H is invertible (which means that the optimization problem satisfies the
second-order sufficient condition [26]), we obtain, similarly to the argument in the
nonlinear equation case that lead to (2.9), that

N
1
2

[
V N,o

]− 1
2
(
xN,o(ω)− x∗) D→ N (0, I), (2.13)

where V N,o is the empirical covariance matrix

V N,o = [HN,o]−1ΣN,o[HN,o]−1 (2.14)

with

HN,o =
1

N

N∑
i=1

∇2
xx

[
f
(
xN,o, ζi(ω)

)]
, ΣN,o =

1

N

N∑
i=1

∇xf
(
xN,o, ζi(ω)

)
∇xf

(
xN,o, ζi(ω)

)T
.

The relationships (2.14) and (2.13) are important for establishing confidence inter-
vals for the estimates xN,o of the true vector x∗. We note that statistical estimates
can be indeed obtained from one sample set of length N as long as we assume local
uniqueness for x∗. If the solution set is not a singleton, the situation is considerably
more complicated, and one cannot expect results such as (2.13) to hold. Even the
optimal value does not necessarily converge to a normal distribution in that case,
see [30, Theorem 5.7] and the discussion following it. Therefore statistical tests are
considerably harder to carry out in this case. One (costly) option for creating confi-
dence intervals for the optimal value in this case is to carry out the SAA procedure
for several replications and constructing the estimates that way [30, (5.170)].
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2.2. SAA-based matrix-free methods for maximum likelihood. The SAA
approach described in §2.1 is thus applicable to either the stochastic optimization
(2.3) or the stochastic nonlinear equation (2.4). Let u1, u2, . . ., uN be identically
distributed, independent samples from variables whose entries are independently dis-
tributed with values ±1, each with probability 0.5. Define θN,o to be the solution of
the following SAA approximation of the expectation form (2.3) of (1.3):

min
θ

{
1

2

N∑
i=1

uT
i log(K(θ))ui +

1

2
yTK(θ)−1y +

nd
2

log 2π

}
. (2.15)

If θ∗,o is the unique solution of the maximum likelihood problem (1.3) and if it sat-
isfies the second-order sufficient condition, then based on (2.13), we obtain that θN,o

converges to θ∗,o in the following distribution sense:

N
1
2

[
V N,o

]− 1
2
(
θN,o(ω)− θ∗,o) D→ N (0, I), (2.16)

where V N,o is the variance estimator obtained from (2.14) based on the Hessian of
the objective (2.15) at θN,o. Under the same conditions, we define the following SAA
nonlinear equation of the expectation form (2.4) of (1.4):

0 =

N∑
i=1

uT
i

((
(K(θ)−1y)(K(θ)−1y)T −K(θ)−1

)∂K(θ)

∂θj

)
ui j = 1, 2, . . . , nθ.

(2.17)
We define its solution as θN . Then, based on (2.9), we obtain the following conver-
gence result in distribution of θN to θ∗, the unique solution of (1.4):

N
1
2

[
V N
]− 1

2
(
θN (ω)− θ∗) D→ N (0, I), (2.18)

where V N is the estimate of the variance matrix of the solution, obtained from (2.10),
where JN is the Jacobian of (2.17) at θN .

Using the techniques from our previous work [5] based polynomial approxima-
tions of the log function, we can approximate with high accuracy log(A)u using only
matrix-vector multiplications with the matrix A. In turn, the objective function of
the optimization problem (2.15) can be computed by using only matrix-vector multi-
plications by means of a Krylov method to compute K(θ)−1y and thus yTK(θ)−1y.
Subsequently, a derivative-free method can be used to carry out the optimization, or
the gradients can be approximated with finite differences and used in a quasi-Newton
method. Both approaches are matrix-free.

Similarly, we can solve (2.17) using a matrix-free approach. The terms K(θ)−1y

can be evaluated matrix-free as above. The term ∂K(θ)
∂θj

ui can be evaluated matrix-free

by generating the partial derivative on the fly. This can be used in a matrix-free quasi-
Newton approach for the nonlinear equation, or by computing divided differences and
using a Newton approach, or finally, by implementing their gradient analytically or
by using automatic differentiation.

In addition (2.18) and (2.16) can be used to generate confidence intervals which
allow us to estimate how far the solution of the SAA approximations (2.17) and (2.15)
are from the solution of the maximum likelihood problem for a given data set itself,
in either the form (1.3) or (1.4).

The two approaches are closely related (note, however, that the SAA approx-
imation of the nonlinear equation is not the same with the gradient of the SAA
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approximation of the optimization problem, as shown with a simple example in the
Appendix), and our development provides statistical estimates for either. Neverthe-
less, the one involving the optimization problem has the additional complexity of
evaluating the action of the logarithm of the covariance matrix on a vector. In the
rest of the work we therefore concentrate on the nonlinear equation approach.

3. Solving linear systems arising from covariance kernels. The stochastic
nonlinear equation approach (2.17) requires solving N + 1 linear systems (K−1y and
K−1ui for i = 1, . . . , N) in each evaluation of the nonlinear system. The (i, j)-entry
of the covariance matrix K is defined based on a covariance kernel, which is a positive-
definite function. Therefore, the resulting K is always symmetric positive definite.
When K is large, a natural choice of the solver is a Krylov-type iterative method, in
particular the preconditioned conjugate gradient (PCG). Here, one can take advantage
of the existence of the multiple right hand-sides and use the block version of PCG [27,
25]. In the literature, this method is usually called block preconditioned conjugate
gradient (BPCG). We note here that the block form is applied to CG, rather than to
the preconditioner (in which case it is called a “block preconditioner”.) For the sake
of completeness, the BPCG method is summarized in §3.1; more details can be found
in, e.g., [27, 25].

The problem presented here entails many similarities to the problem of radial basis
function (RBF) interpolation [10, 14]. The interpolation problem finds an interpolant
in the form

∑n
i=1 aiψ(‖x− xi‖) + c, to interpolate some function whose values are

known only at the points {xi}. Here, the unknowns of the interpolant are ai and
c, subject to the constraint

∑
ai = 0, and ψ(r) is a radial basis function. The

problem amounts to solving a linear system that is augmented from K with entries
Kij = ψ(‖xi − xj‖), where the solution vector a = [ai] is orthogonal to 1 (the
vector of all ones). In contrast to the covariance kernel, which is decreasing as r
increases, the generally used RBF kernels (such as biharmonic, polyharmonic and
multiquadric) are increasing functions. One can show that the matrix K resulting
from some RBF kernels is negative definite constrained to the subspace that is the
orthogonal complement of span{1} (see, e.g., [24]). A preconditioned Krylov iteration
method was proposed in [10, 14]. Although it was mentioned that the method was
analogous to PCG, we note that in each iteration the method entails a minimization
property whereby the solution vector is chosen to minimize the (semi) K-norm of the
residual vector, whereas in the standard PCG method the solution vector minimizes
the K-norm of the error vector.

To simplfy notation, in what follows, we use n (instead of nd as in §1) to denote
the size of K. Since we use a BPCG solver, the key to a good performance relies on
two factors: (a) how efficiently a matrix-vector multiplication can be performed and
(b) how efficiently a preconditioner can be constructed and be applied to a vector. In
addition to solving linear systems, matrix-vector multiplications are needed for the
partial derivatives ∂K/∂θj . Since the matrix K is dense (essentially full), it is not
expected that the matrix-vector multiplication can be conducted in O(n) time. How-
ever, considering the special structure of K, there exist O(n log n) time/O(n) space
algorithms that run asymptotically faster and require much less memory than does the
brute-force matrix-vector multiplication. This is also true for some preconditioners.
Details are in order starting from §3.2.

3.1. Block preconditioned conjugate gradient. The block PCG method is
an extension of the standard PCG method for solving a symmetric positive definite
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system (with multiple right-hand sides)

AX = B,

where the n× s matrix B contains s right-hand vectors (sometimes called block vec-
tors) and X ∈ Rn×s contains the s unknown vectors. BPCG generates a sequence of
A-conjugate search direction matrices {Pj} and updates the solution matrix Xj+1 and
the residual matrix Rj+1 for each j. With a symmetric positive-definite preconditioner
M , the update formulas are as follows:

Xj+1 = Xj + Pjαj ,

Rj+1 = Rj −APjαj ,

Pj+1 = (M−1Rj+1 + Pjβj)γj+1,

where

αj = (PT
j APj)

−1γTj (R
T
j M

−1Rj),

βj = γ−1
j (RT

j M
−1Rj)

−1(RT
j+1M

−1Rj+1).

Here, the series of s× s matrices {γj} is unspecified, but a typical construction is to
use them to orthogonalize the search direction matrices Pj .

One can show that the residual matrices Rj areM
−1-orthogonal. If we define the

block-span of a set of matrices Yj ∈ Rn×s, j = 1 : k as

block-span{Y1, . . . , Yk} :=


k∑

j=1

Yjγj

∣∣∣∣∣∣ γj ∈ Rs×s

 ,

then one sees that Rk+1 is orthogonal to

Kk := block-span{M−1R0, (M
−1A)M−1R0, . . . , (M

−1A)kM−1R0}.

Thus, the estimated solution Xk+1 minimizes tr[(X − X∗)
TA(X − X∗)] among all

X ∈ X0 + Kk, where X∗ = A−1B is the exact solution. An immediate consequence
is that in exact arithmetic, BPCG will terminate within dn/se iterations. However,
two issues affect the performance of BPCG in practical situations. The first is that
similar to PCG, BPCG has a linear rate of convergence; thus it often requires far
fewer than dn/se steps to converge when n/s is large. The second fact is that because
of round-off errors, the orthogonality of Rk+1 to Kk can be quickly lost. Consequently
when n/s is not large enough, dn/se iterations often are not enough to sufficiently
decrease the residual matrices.

BPCG may break down when PT
j APj or RT

j M
−1Rj becomes numerically rank-

deficient, which can be triggered by the convergence of one or several systems or
by round-off errors. A general practice in such a case is to drop the corresponding
columns that cause rank-deficiency in all the involved iterates (Xj , Pj and Rj) and
to continue the iteration. In addition, normalizing all the right-hand sides and initial
solution vectors helps reducing the numerical rank deficiency.

3.2. Matrix-vector multiplication and preconditioner: regular grid case.
We now investigate the two details of implementing BPCG: matrix-vector multipli-
cation and the preconditioner. First consider a simple case, where the sites {xi} are
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located on a regular n1 × n2 grid with equally spacing grid points. Let the sites (grid
points) be ordered from top to bottom and from left to right, that is, the top-left cor-
ner is x1, the point below it is x2, and the one to the right is xn1+1. It is not hard to
see that the resulting covariance matrix K (and the partial derivatives ∂K/∂θj) is an
n2 ×n2 block Toeplitz matrix, where each block is also Toeplitz and has size n1 ×n1.
Such matrices are called BTTB matrices (block Toeplitz with Toeplitz blocks).

3.2.1. Circulant matrix and BCCB matrix. A circulant matrix Cn of order
n has the following form:

Cn =



c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1

cn−1 cn−2 · · · c1 c0

 .

It is well known that Cn can be diagonalized by the FFT (fast Fourier transform)
matrix Fn of the same order:

FnCnF
∗
n = Λn = diag(λ1, . . . , λn), (3.1)

where

(Fn)jk = ωjk/
√
n, ω = exp (2πi/n) , i =

√
−1,

and the λi’s are the eigenvalues of Cn. Let ei be the ith column of the identity matrix.
From (3.1), it is not hard to verify the following:

Λn1n =
√
nFn(Cne1),

which indicates that the eigenvalues of Cn can be obtained by performing one FFT
on the first column of Cn. Therefore, the time cost of finding the eigenvalues of a
circulant matrix is O(n log n).

Multiplying Cn by a vector q or solving a linear system with respect to Cn also
takes O(n log n) time, where in essence the process involves only one or a few FFTs
or inverse FFTs. For example, consider

C−1
n q = F ∗

nΛ
−1
n Fnq = F ∗

n(Λ
−1
n (Fnq)).

This means that C−1
n q can be obtained by first computing an FFT on q, then dividing

the resulting vector by the eigenvalues of Cn element wise, and performing an inverse
FFT on the resulting vector.

A BCCB matrix is a block circulant matrix with circulant blocks. In notation,
we let

Cn1n2 =



C(0) C(n2−1) · · · C(2) C(1)

C(1) C(0) C(n2−1) C(2)

... C(1) C(0)

. . .
...

C(n2−2)

. . .
. . . C(n2−1)

C(n2−1) C(n2−2) · · · C(1) C(0)


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denote an n2 × n2 block circulant matrix, where each block C(i) is n1 × n1 circulant.
To be consistent, we assume n = n1n2 and, when necessary (avoiding tedious nota-
tion), drop the order indicator n in the subscript. The BCCB matrix Cn1n2 can be
diagonalized by the Kronecker product of two FFT matrices of appropriate orders.
Let each block C(i) be diagonalized as

Fn1C(i)F
∗
n1

= Λ(i), i = 0, . . . , n2 − 1.

Then

(Fn2⊗Fn1)Cn1n2(Fn2⊗Fn1)
∗ = diag

(
n2−1∑
i=0

Λ(i),

n2−1∑
i=0

ωiΛ(i), . . .

n2−1∑
i=0

ω(n2−1)iΛ(i)

)
.

In other words, Cn1n2 is diagonalized by Fn2 ⊗Fn1 , which results in a block diagonal
matrix whose jth diagonal block is a diagonal matrix

∑
i ω

jiΛ(i). Therefore, the
eigenvalues of a BCCB matrix can be obtained by a 2D FFT. Since the computational
cost of 2D FFT is O(n log n), multiplying a BCCB matrix with a vector or solving a
BCCB system thus also takes O(n log n) time.

3.2.2. Matrix-vector multiplication with a BTTB matrix. A Toeplitz ma-
trix Tn of order n has the form

Tn =



t0 t−1 · · · t−n+2 t−n+1

t1 t0 t−1 t−n+2

... t1 t0
. . .

...

tn−2
. . .

. . . t−1

tn−1 tn−2 · · · t1 t0

 .

Amatrix-vector multiplication with Tn can be performed efficiently by first embedding
Tn in a circulant matrix:

C2n =

[
Tn ∗
∗ Tn

]
,

where the two blocks denoted by ∗ are filled with elements so as to ensure that C2n

is circulant. Then, the matrix-vector multiplication Tnq can be augmented as[
Tnq
∗

]
=

[
Tn ∗
∗ Tn

] [
q
0

]
.

In other words, one needs to pad q with n zeros and then multiply it by the circulant
matrix C2n. The vector Tnq is obtained from the first n components of the resulting
vector. The computational cost is thus O(n log n).

With a similar notation as a BCCB matrix, a BTTB matrix has the form

Tn1n2 =



T(0) T(−1) · · · T(−n2+2) T(−n2+1)

T(1) T(0) T(−1) T(−n2+2)

... T(1) T(0)
. . .

...

T(n2−2)

. . .
. . . T(−1)

T(n2−1) T(n2−2) · · · T(1) T(0)

 ,
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where each T(i) is an n1 × n1 block. To multiply Tn1n2 with a vector q, we need a
double circulant embedding: first embed each block T(i) in a circulant form to obtain
a block Toeplitz matrix with circulant blocks and then embed the resulting block
Toeplitz matrix in a block circulant matrix, which results in a BCCB matrix. Using
the same zero-padding trick as above, we can compute the matrix-vector product
Tn1n2q in O(n log n) time by using this BCCB embedding.

3.2.3. Preconditioner. There exist many circulant preconditioners for a Toeplitz
system. One benefit of using a circulant preconditioner for a dense system is that it
entails a O(n log n) multiplication cost. In what follows, we consider the T. Chan’s
circulant preconditioner [3, 4, 2, 34]. This preconditioner possesses several advantages:
(a) it is a general preconditioner and does not only apply to Toeplitz systems; (b)
when applied to a Toeplitz system, it does not require the knowledge of the generating
function, if any, of the Toeplitz system; (c) it can be efficiently constructed; and (d)
it can be easily generalized for a BTTB system, resulting in a BCCB preconditioner.

The T. Chan’s circulant preconditioner, denoted c(1)(An), for a general symmetric
matrix An of order n, minimizes

‖Cn −An‖F
among all circulant matrices Cn. Since the objective is to minimize the Frobenius
norm, each diagonal of the matrix An can be considered separately. Clearly, ci, the
ith entry of the first column of c(1)(An), should be the average of all the entries located
at the ith lower diagonal and the (n− i)th upper diagonal of An, namely,

ci =
1

n

∑
(k−`) mod n=i

(An)k`. (3.2)

Therefore, when An = Tn, a Toeplitz matrix, the first column of c(1)(Tn) is given by

ci =
1

n
[(n− i)ti + it−n+i], i = 0, . . . , n− 1.

Clearly, c(1)(Tn) can be constructed in O(n) time, whereas c(1)(An) for a general
matrix An usually requiresO(n2) time, unless special structures of An can be exploited
to reduce the cost.

Using a similar notation as for block Toeplitz/circulant matrices, we let

An1n2
=

 A(0,0) · · · A(0,n2−1)

...
. . .

...
A(n2−1,0) · · · A(n2−1,n2−1)


denote an n2 × n2 block matrix where each block A(k,`) has size n1 × n1. The BCCB

preconditioner for An1n2 , denoted by c(2)(An1n2), minimizes

‖Cn1n2 −An1n2‖F

among all BCCB matrices Cn1n2 . Let c
(i)
j denote the jth entry of the first column

of C(i). Then, using a similar argument as above, the optimal c
(i)
j is given by the

formula

c
(i)
j =

1

n1n2

∑
(k−`) mod n2=i

∑
(p−q) mod n1=j

(
A(k,`)

)
p,q
. (3.3)
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In the special case when An1n2 = Tn1n2 , a BTTB matrix, c
(i)
j admits the following

expression:

c
(i)
j =

1

n1n2

{
(n2 − i)

[
(n1 − j)t

(i)
j + jt

(i)
j−n1

]
+ i
[
(n1 − j)t

(i−n2)
j + jt

(i−n2)
j−n1

]}
,

where t
(i)
j for all j denotes the elements of the block T(i). Therefore, the construction

cost of the BCCB preconditioner c(2)(Tn1n2
) is also O(n).

For both the circulant and the BCCB preconditioners, a superlinear convergence
rate can be established for PCG if the Toeplitz/BTTB system is generated by a
function in the Wiener class. These generating kernels are different from what we
call here covariance kernels, which define the covariance matrix (although they are
related by the spectral density of the Gaussian process). Generating kernels of a
Toeplitz system are not discussed in this paper, and interested readers are referred to
Reference [3].

3.2.4. Summary. Since the covariance matrix K resulting from a regular grid
is a BTTB system, it can be multiplied by a vector in O(n log n) time by first being
embedded in a BCCB matrix. It also entails a corresponding BCCB preconditioner
that can be constructed in O(n) time and be multiplied by a vector in O(n log n) time.

3.3. Matrix-vector multiplication and preconditioner: non-regular grid
case. When the covariance matrix K is generated from a non-regular grid, the BTTB
property of K (and the partial derivatives ∂K/∂θj) is lost. Therefore, the BCCB
embedding trick for performing matrix-vector multiplication is no longer applicable.
Since K is generated from a kernel function, however, the fast multipole method
(FMM) is a suitable candidate for efficiently performing the multiplication. The time
cost of FMM generally is considered O(n log n).

3.3.1. Fast multipole method. To compute the matrix-vector product s =
Kq, we write each entry in the following form:

si =
n∑

j=1

qjφ(xi − xj ;θ). (3.4)

FMM uses a far-field expansion to approximate the kernel φ for a given level of
accuracy. The treecode algorithm for implementing FMM was introduced by Barnes
and Hut in [1]; it used a monopole (first-order) approximation and a divide-and-
conquer evaluation strategy. The treecode with higher-order approximations was
developed for different kernel functions in [9, 22, 23]. Our code was implemented
based on [21].

The outline of the algorithm is as follows. The first step is inputting data, such as
the coefficients qj and the particle positions xi (here we treat the sites xi as particles).
Then we construct a hierarchical tree of particle clusters. The root cluster is a box (in
2D) containing all the particles. The root is bisected along the Cartesian axes, and the
four children become subclusters of the root. The child clusters are then bisected, and
the process continues until a cluster contains fewer than N0 particles, where N0 is a
user-specified parameter. After the tree is constructed, the code cycles through every
point. If the point and the cluster are well separated, then Taylor approximation is
processed. The clusters that are not well separated are processed by direct summation.
The code uses a multipole acceptance criterion to determine whether a given point
and cluster are well separated. The criterion for being well separated is r/R < c,
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where r is the radius of the cluster, R is the distance between the point and the
center of the cluster, and c is a user-specified parameter that, together with the order
p of the Taylor expansion, controls the series truncation error.

Assume that the particles have been divided into disjoint clusters, and write the
sum (3.4) as a sum of particle-cluster interactions

s(xi) =
n∑

j=1

qjφ(xi − xj) =
∑
C

s(xi, C),

where, for each cluster C,

s(xi, C) =
∑
yj∈C

qjφ(xi − yj).

If particle xi and cluster C are well separated, we expand φ in a Taylor series with
respect to y about yc, where yc is the center of the cluster C:

s(xi, C) ≈
∑
yj∈C

qj

p∑
||k||=0

1

k
Dk

yφ(xi,yc)(yj − yc)
k

=

p∑
||k||=0

1

k
Dk

yφ(xi,yc)
∑
yj∈C

qj(yj − yc)
k.

Here, Cartesian multi-index notation has been used with k = (k1, k2), ki ∈ N, ||k|| =
k1 + k2, k! = k1!k2!, y = (y1, y2), yi ∈ R, yk = yk1

1 yk2
2 and p is the order of the Taylor

expansion. In the above approximation, the inner summation term

mk(C) =
∑
yj∈C

qj(yj − yc)
k (3.5)

is called the cluster moment. It needs to be calculated only once for each cluster. On
the other hand, the Taylor coefficients

ak(xi,yc) =
1

k!
Dk

yφ(xi,yc) (3.6)

are dynamically generated on the fly since not all clusters are far away from xi. We
will need to derive a recurrence relation to efficiently compute ak(xi,yc) for a specific
kernel φ we are interested in; this task is the subject of §4.

3.3.2. Preconditioner. The T. Chan’s circulant preconditioner c(1)(A) and the
BCCB preconditioner c(2)(A) are general preconditioners. They can be constructed by
using (3.2) and (3.3) for a general symmetric matrix A that does not necessarily have
a (block) Toeplitz structure. Empirically, the two preconditioners perform similarly,
and they both work well when there is an underlying grid structure for the sites {xi},
even though the grid may not be a regular one. In §5, we show such results for a
deformed grid.

3.3.3. Summary. When the sites are not on a regular grid, FMMwithO(n log n)
cost is used to perform matrix-vector multiplications. Circulant preconditioners are
still the choice for preconditioners, whose construction unfortunately takes O(n2)
time.
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4. The covariance kernel. The covariance kernel φ(r;θ) defines the covariance
matrix K with entries Kij(θ) = φ(xi−xj ;θ). Among the many choices of covariance
kernel φ, one with a finite support often results in a sparse covariance matrix K where
nonzeros are located only on a few diagonals. A benefit of such a kernel is that the
cost of matrix-vector multiplications is only linear to the number of sampling sites.
However, a compact kernel sometimes results in bumpy surfaces of (the SAA) of the
gradient of the log-likelihood (see (2.17)):

ΨN
j (θ) =

N∑
i=1

uT
i

((
(K(θ)−1y)(K(θ)−1y)T −K(θ)−1

)∂K(θ)

∂θj

)
ui,

which pose severe numerical difficulty in locating the root. An illustration is shown
in Figure 4.1(a), where the kernel

φ(r;θ) = ϕ

(√
r21
θ21

+
r22
θ22

)
is a spline with compact support:

ϕ(r) =


1− 6r2 + 6r3 r ∈ [0, 1/2),

2(1− r)3 r ∈ [1/2, 1),

0 r ∈ [1,∞).

Therefore, we do not consider compact kernels.
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(a) Compact kernel.
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Fig. 4.1. Plots of ΨN
1 (θ) for different covariance matrices K(θ) generated from different kernels.

The choice of kernel in this work is the Matern function

ϕ(r) =
1

2ν−1Γ(ν)
(
√
2νr)νKν(

√
2νr).

We chose the Matern kernel due to the fact that it is a recommended initial choice
for spatial data analysis, owing to its limited smoothness at 0 which results in better
conditioning of the covariance matrix and more stable behavior of the conditional
predictor compared to smoother kernels [32]. Here Γ is the Gamma function and
Kν is the modified Bessel function of the second kind of order ν. When ν is some
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integer plus 1/2, the Matern function can be computed without evaluations of Bessel
functions. We choose ν = 3/2, which results in

ϕ(r) = (1 +
√
3r) exp(−

√
3r). (4.1)

We will demonstrate two uses of the Matern function in later numerical experiments.
The first use is in the tensor product form,

φ(r;θ) = σ2ϕ

(∣∣∣∣r1θ1
∣∣∣∣)ϕ(∣∣∣∣r2θ2

∣∣∣∣) , θ = [θ1, θ2, σ]
T , (4.2)

whereas the second use is the native form,

φ(r;θ) = σ2ϕ

(√
r21
θ21

+
r22
θ22

)
, θ = [θ1, θ2, σ]

T . (4.3)

The surface ΨN
1 (θ) resulting from (4.3) is shown in Figure 4.1(b). We note that

for given data sites the resulting covariance matrix K(θ) is infinitely differentiable
as long as θ1 > 0 and θ2 > 0, which defines the domain of the hyperparameter θ.
Therefore the assumption of twice continuous differentiability of K(θ), that we use in
the analysis, does hold.

4.1. Taylor coefficients in FMM. With the choice of kernel (4.3), the Taylor
coefficients a in (3.6) can be evaluated with the help of those of the other three kernels
ψ1 = exp(−

√
3r)/r, ψ2 = exp(−

√
3r), ψ3 =

√
3r exp(−

√
3r). Let bk, ck , dk be their

Taylor coefficients, respectively:

bk =
1

k!
Dk

yψ1(xi,yc), ck =
1

k!
Dk

yψ2(xi,yc), dk =
1

k!
Dk

yψ3(xi,yc).

We have

ak = ck + dk, (4.4)

and the following recurrence formulas:

bk =
1

L1L2||k||r2

(
(2||k|| − 1)

2∑
i=1

Lj(i)(xi − yi)bk−ei − (||k|| − 1)

2∑
i=1

Lj(i)bk−2ei

)

+

√
3

L1L2||k||r2

(
2∑

i=1

Lj(i)((xi − yi)ck−ei
− ck−2ei

)

)
, (4.5)

ck =

√
3

||k||

(
2∑

i=1

1

Li
((xi − yi)bk−ei

− bk−2ei
)

)
, (4.6)

dk =

√
3

||k||

(
2∑

i=1

xi − yi
Li

(
√
3ck−ei

− bk−ei)−
2∑

i=1

1

Li
(
√
3ck−2ei

− bk−2ei)

)
, (4.7)

for ||k|| ≥ 1, where L1 = θ21, L2 = θ22, j(1) = 2, j(2) = 1; b0 = ψ1(r), c0 = ψ2(r),
d0 = ψ3(r), and bk, ck, dk = 0 if any ki < 0. Recurrence relations for ∂φ/∂θ` are
similar but tedious in notation; because of the page limit they are not shown here.
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5. Numerical results. In this section, we show comprehensive numerical results
to demonstrate the practicality of the combination of various techniques considered
in this paper for solving the maximum likelihood problem involving a Gaussian pro-
cess. Emphasis is placed on the scalability of the techniques. For this purpose, the
experiments were conducted based on the following cases:

1. Regular grid: The kernel φ is defined in (4.2). A BCCB preconditioner is
used.

2. Regular grid: The kernel φ is defined in (4.3). A BCCB preconditioner is
used.

3. Deformed grid: The kernel φ is defined in (4.3). A circulant preconditioner
is used.

These three cases will be frequently referenced throughout this section. The deformed
grid is generated by scaling the y-coordinates of the sites of a regular grid by a
quadratic function, which is 1 in the middle of the range of x and 0.5 at the extremes.
The deformed grid was illustrated in [5]; because of limited space, we do not replicate
the figure here.

Each experiment was conducted on a Linux desktop with multiple (4 to 16) cores
and 4 to 32 GB of memory. (Not all the experiments were done on the same machine,
but the machine architecture was the same in each experiment and each comparison,
to be fair.) The code was implemented by using the Matlab language, except that
occasionally some loop- or recursion-intensive functions were written in C/C++ and
called by Matlab via the mex function scheme. Note that in principle the implementa-
tion was serial but not parallel, even though the Matlab scheduler would make full or
partial use of all the cores for some operations. The purpose of the experiments is to
demonstrate that we can handle a Gaussian process with as many sites as 220 ≈ 106

on a single desktop machine and that the proposed techniques are scalable. In a future
parallel implementation on supercomputers, we expect that the size of the data that
can be processed can grow by several orders of magnitude.

5.1. Performance of BPCG. The first task is to verify that BPCG is a suitable
solver for solving the linear systems. Figure 5.1(a) shows a typical convergence history
for the four CG solvers: CG (the standard CG), PCG (preconditioned CG), BCG
(block CG), and BPCG. The linear system (covariance matrix K(θ)) was defined
based on Case 1, where the size of the grid is 64× 64 and θ = [4, 14, 3]T . The right-
hand sides were randomly generated. In all experiments throughout this section, by
“residual” we mean the norm of the residual vector divided by the norm of the right-
hand side. In the case of block solvers, 100 right-hand sides were used for testing,
and the residual for each iteration was the maximum of the residuals across all linear
systems.

From Figure 5.1(a), we can see that the standard CG solver shows no indication
of convergence in 500 iterations and that PCG and BCG converge very slowly. On
the other hand, BPCG converges to tolerance 10−8 in around 70 iterations. Thus,
BPCG is favorable for the type of linear systems at hand. The convergence histories
for Case 2 and Case 3 are similar and are not shown here.

5.2. Scalability of BPCG. Encouraged by the rapid convergence, we further
tested the scalability of the solver by varying the size of K (or equivalently, the size
of the grid). We used the same parameter θ as in the above experiment, generated
100 random right-hand sides, and set the tolerance of the BPCG solver to be 10−8.
The number of iterations are shown in Table 5.1, and the actual running times per
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Fig. 5.1. Performance of BPCG.

iteration are plotted in Figure 5.1(b) (the curve for Case 1 almost overlaps with that
for Case 2; thus only the former is shown).

Table 5.1
Number of iterations for different sizes of linear systems.

Grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024
Case 1, # iter 72 102 110 128 149
Case 2, # iter 87 153 191 214 263

As expected, the running times for solving the linear systems conform to the
theoretical cost O(n log n). (In a log-log plot, an n log n curve looks indistinguishable
from a straight line of slope 1.) This running time is achieved by ensuring that both
the matrix-vector multiplication and the multiplication with the preconditioner have
a cost of this order. One can see from the table that as the size of the matrix increases,
the needed number of iterations increases moderately. According to this trend, for
larger systems the number of iterations will be relatively small compared with n.

5.3. Scalability of FMM. The above experiment empirically confirms what is
known theoretically: the cost of one BPCG iteration is dominated by the matrix-
vector multiplication and the multiplication of the preconditioner. To our knowledge,
however, when performing matrix-vector multiplications, FMM runs much slower than
FFT, even though the two have the same asymptotic cost. Figure 5.2 shows the
running time for performing one matrix-vector multiplication as the matrix size varies.
Nevertheless, the plot shows better scaling of the running time than O(n2). The
parameter for generating the covariance matrix was θ = [7, 10, 3]T , and the parameters
for the treecode implementation were p = 14, N0 = 500, and c = 0.4. The parameter
c was chosen empirically with an aim of balancing computational power and accuracy.

5.4. Overall parameter estimation process. In this section, we present the
results of estimating the parameter θ = [θ1, θ2, σ]

T of the Gaussian process given a
sample y generated from N (0,K(θ)) with convergence guarantee (2.9)–(2.10) pro-
vided by the SAA interpretation of the approach. The SAA nonlinear equation (2.17)
is solved to this end, and confidence intervals are generated from the convergence in
distribution statement (2.9)–(2.10). If each component of the parameter θ we sample
from is inside its confidence interval, we declare the approach validated. We note,
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Fig. 5.2. Scalability of FMM.

however, that this test is slightly inaccurate, in that θ is the solution of the score
equations (1.4) only in the limit of the number of sites going to ∞, but not for a finite
data set. On the other hand, the SAA approach (2.17) approximates the solution of
the score equations and not directly θ, so its use in the validation test is problem-
atic. Here, however, we are faced with the difficulty that, for the reasons outlined in
this paper, it is very expensive to determine the solution of the maximum likelihood
equation itself (1.4) particularly for large number of data sites, where the confidence
intervals are tighter and perhaps easier to doubt. It is conceivable that one could use
a resampling technique such as parametric bootstrap to create confidence intervals for
θ itself for which the test would have more consistency, but the numbers of samples
typically used for such endeavors – on the order of hundreds [16] – indicates the num-
ber of times we would have to repeat the calculations. While now the optimization
can be warm-started, the CPU times would still be daunting. We thus decided to use
the test with θ, also guided by consistency assumption of the maximum likelihood
estimators [32], which turned out to result in validation in the sense described above
for all the experiments.

The covariance matrix K was defined based on the parameter θ = [7, 10, 3]T . The
solver for solving the stochastic nonlinear equation ΨN (θ) = 0, where N = 100, was
the Matlab function fsolve, which by default used the trust-region dogleg algorithm.
The Jacobian was estimated by finite difference. The tolerance of the linear system
solver BPCG was set to 10−8 as before.

For Case 1, an initial guess θ0 = [4, 14, 1]T was used. For various sizes of grid (64×
64, 128× 128, 256× 256, 512× 512, and 1024× 1024), the estimated θ (together with
95% confidence intervals) are shown in Figure 5.3(a). One can see that the estimated
parameters are close to those that define the covariance matrix K particularly for
large grid sizes. The confidence intervals all cover the true θ; and as the grid size
increases, the intervals become narrower and narrower. This result implies that the
proposed SAA approach is particularly favorable for large-scale problems, which is
precisely the regime we are aiming for. We mention, however, that while θ sits inside
the confidence intervals, a more precise validation would require determining whether
the probability of θ being inside the confidence interval is close to the nominal value
of 95%. This would require replicating the SAA approach a large number of times –
probably more than one hundred – by creating fresh samples of ui; a computationally
daunting task when one of the 1024 × 1024 examples takes a few days.

More detailed information on solving the nonlinear equations is provided in Fig-
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ure 5.3(b). The scaling of the total running times is roughly to the order O(n) or
O(n log n). This is achieved by the O(n log n) cost of solving linear systems K(θ),
and roughly a constant number of function evaluations of ΨN (θ). The figure shows
that the number of function evaluations is roughly 70. The trend shown in the figure
can be used to estimate the running time for larger grids.
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Fig. 5.3. Results for Case 1.

For Case 2, an initial guess θ0 = [5, 14, 1]T was used, and the corresponding
results are shown in Figures 5.4(a) and 5.4(b). (In Figure 5.4(a) the positions of the
intervals are slightly shifted horizontally so that they can be clearly seen; the actual
grid sizes were the same as those in Case 1.) As with Case 1, the results here are
similarly expected: sufficiently accurate estimates, narrower and narrower confidence
intervals, O(n log n) scaling of running times, and around 70 function evaluations.
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Fig. 5.4. Results for Case 2.

For Case 3, the same initial guess θ0 = [5, 14, 1]T was used, but only the 64 ×
64 grid was tested. Despite the encouraging results of the previous two cases, the
extremely long running time of matrix-vector multiplications via FMM prevented us
from reporting results for larger grids. For the 64×64 grid, parameters of FMM were
set the same as those in §5.3, to ensure that the error of matrix-vector products fell
around 10−10. Results are in the following:
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Estimated parameters:

theta_1: 6.6453, 95% confidence interval: [3.0171, 10.2735]

theta_2: 9.3134, 95% confidence interval: [4.2572, 14.3696]

sigma: 2.7271, 95% confidence interval: [0.5839, 4.8704]

Function evaluations: 65

Running time: 331306 seconds (3.83 days)

Except for the running time, the results are similar to those in the previous
two cases. Extrapolating from these results, we expect that the estimation of the
parameters will be more and more accurate as the size of the grid increases. We also
expect that the O(n logn) running time holds for Case 3, since the number of function
evaluations do not vary much. We note again that it is the large hidden constant,
rather than the asymptotic cost, that prevents us from running larger-scale tests. In
future work involving a parallel implementation on supercomputers, experiments with
much larger n can be conducted and results be reported.

6. Concluding remarks. We have introduced a matrix-free approach for com-
puting the solution of the maximum likelihood problem for Gaussian processes. The
approach is based on a sample average approximation, which also provides the means
for generating a confidence interval based on convergence in distribution results for
sample average approximation approaches. In turn, this requires only the action of
the inverse of the covariance matrix on a vector, which can be carried by precon-
ditioned Krylov methods using only matrix-vector multiplications. For data on a
regular grid, the matrix-vector multplications can be carried out by circulant em-
bedding in O(n log n) time; for data on an arbitrary grid, the latter is accomplished
by a fast multipole method, even for covariance kernels that do not have compact
support. This removes the reliance of the analysis step of Gaussian processes on the
use of a Cholesky factorization, which is the prevailing current practice [28]. If the
Krylov methods are preconditioned successfully, the approach can scale well, as we
have demonstrated on three cases involving the Matern kernel. Future work will in-
volve extensive testing of the approach on increasingly large problems—in particular
for the fast multipole approach that, as we have demonstrated, scales well but is still
expensive for medium-scale tests because of high initial cost. Our future work will
address the rapid increase in data set size in the applied sciences.
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Appendix. Example of difference between SAA nonlinear equations
and optimization approaches. We illustrate that the SAA terms do not have the
same relationship as the exact means, in that one is not the gradient of the other.
This phenomenon is brought about by the fact that

d

dθ
tr(log(K)) = tr

(
K−1 dK

dθ

)
but

d

dθ
log(K) 6= K−1 dK

dθ
or

dK

dθ
K−1.

We now illustrate this situation with an example. Let

K = exp

([
a b
b a

])
= ea

[
cosh(b) sinh(b)
sinh(b) cosh(b)

]
,

where a and b are functions of a single variable θ. To simplify notations, we let
c = cosh(b) and s = sinh(b). Then

d

dθ
log(K) =

[
a′ b′

b′ a′

]
, K−1 = e−a

[
c −s
−s c

]
,

dK

dθ
= a′ea

[
c s
s c

]
+ea

[
s c
c s

]
.

Clearly,

K−1 dK

dθ
=
dK

dθ
K−1 =

[
a′ 1
1 a′

]
It then immediatly follows that, in general, for a vector u in R2 we have that

uTK−1 dK

dθ
u 6= d

dθ
uT log(K)u = uT

[
a′ b′

b′ a′

]
u,

Therefore we cannot use the left-hand side to compute the derivative of the right-hand
side.
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